

Overview

- Motivation
- PDkit data processing pipeline
- PDkit user and contributor support
- Longitudinal processing with dataflow
- CUSSP study
- Future work

- 1. Google Scholar: 1,000+ papers on Parkinsonian tremor using accelerometers and ML in 2018-19
 - Impossible to replicate and to compare results
 - Differences in data processing and algorithm implementation
 - In most cases, insufficient details provided to replicate algorithm used
- 2. Common pattern emerging:
 - Machine Learning processing pipeline
 - From raw data to severity assessment (often using MDS-UPDRS scores)

- Specify digital analytics protocol precisely using software templates
- Unified extensible implementation of digital biomarkers
- Designed using a data processing pipeline approach
- API design follows common python machine learning approach scikit-learn

```
Source code https://github.com/pdkit/pdkit
Documentation https://pdkit.readthedocs.io/
Project info https://pdkit.github.io/
Docker images https://hub.docker.com/r/pdkit/pdkit
```


Examples

```
Train a model with clinical labels for MDS-UPDRS scoring
                                                                                  initialisation
>> tp = pdkit.TremorProcessor("raw data folder")
>> ts = pdkit.TremorTimeSeries()
>> amplitude, freg = tp.amplitude(ts, 'welch')
                                                                                    analytical protocol
>> welch biomarker = pdkit.TestResultSet().process()
>> clinical UPDRS = pdkit.Clinical UPDRS(labels, testResultSet)
                                                                                 score new test
>> clinical UPDRS.predict(new measurement)
Calculate key gait features on a single data file:
>> ts = pdkit.GaitTimeSeries().load(filename)
>> gp = pdkit.GaitProcessor()
>> step regularity, stride symmetry = qp.walk regularity symmetry(ts)
```


- Source code on github
 - Continuous Integration ensures working code
 - MIT License

- Source code on github
 - Continuous Integration ensures working code
 - MIT License
- Documentation on Read the Docs
 - References to literature
 - Explanation of calculations
 - Auto-generated from the source code

- Source code on github
 - Continuous Integration ensures working code
 - MIT License
- Documentation on Read the Docs
 - References to literature
 - Explanation of calculations
 - Auto-generated from the source code
- Jupyter Notebooks demonstrate functionality
 - Notebooks can run on Binder, Deepnote and Colaboratory

- Source code on github
 - Continuous Integration ensures working code
 - MIT License
- Documentation on Read the Docs
 - References to literature
 - Explanation of calculations
 - Auto-generated from the source code
- Jupyter Notebooks demonstrate functionality
 - Notebooks can run on Binder, Deepnote and Colaboratory
- Docker images for quick deployment
 - Publicly available at Docker Hub

- Source code on github
 - Continuous Integration ensures working code
 - MIT License
- Documentation on Read the Docs
 - References to literature
 - Explanation of calculations
 - Auto-generated from the source code
- Jupyter Notebooks demonstrate functionality
 - Notebooks can run on Binder, Deepnote and Colaboratory
- Docker images for quick deployment
 - Publicly available at Docker Hub
- Available on PyPI the python package registry

Dataflow programming

- Advanced unified programming model:
 - stream processing from wearables
 - batch processing from smartphones
- Can deal with infinite out of order datasets
- Scaling out on cloud architectures
- Platform selected Apache BEAM
- Describe calculations as a directed graph which is mapped automatically by BEAM to the underlying infrastructure
- Infrastructure mapped using runners
- Demonstrate streaming PDkit

Source code https://github.com/pdkit/pdkit-beam

Tremor processing with Beam-PDkit

Example

```
with beam.Pipeline(options=options) as p:
       messages = (p
                       'Read from Stream' >> beam.io.gcp.pubsub.ReadFromPubSub(topic=known args.input topic)
                       .with output types(bytes)
       windowed data = (messages
                          'ParseMagSumAcc' >> ParseMagSumAcc(30,10)
       grouped = (windowed data
                    'GroupWindowsByUser' >> beam.GroupByKey()
                    'Calculate pdkit method' >> CalculatePDkitMethod()
                    'UserScoresDict' >> beam.ParDo(UserDict())
       welch = (grouped
                  'Parse it' >> beam.Map(lambda elem: (elem['user'], elem['result'], elem['start'], elem['end']))
```


Case study

- Experiment:
 - 100,000 concurrent patients
 - 3d wrist sensor sampled at 50 Hz
 - 12 hours monitoring
 - Tremor power using Welch PSD calculated
- Show rapid tremor variations
- Total cost on GCE: \$ 9.43

Longitudinal biomarkers

- Observation: Any feature can be turned to a longitudinal biomarker
- Consider the sample distribution rather than individual measurements
- Dataflow processing is the key ingredient towards a process sampling paradigm
- Early evidence suggests significantly higher consistency and precision

Pissadaki et al IBM Journal, 2018

July (43 samples)

CUSSP study

- CUSSP at the UCL Institute of Neurology and Homerton Hospital (UK)
 - Details https://clinicaltrials.gov/ct2/show/NCT02937324
 - Data collection completed in May
 - 74 patients
- 20 lines of PDkit source code specify processing protocol
- 2-3 hours of software development
- Can recreate results in 1 hour on standard laptop
- Clinical results to be published this summer

Current and future work

- Development of gait biomarkers (except symmetry) present distinct challenges
- Better objectives measures seem to be obtained by turning rather than straight line walking performance
- Fully automatic assessment of turning requires:
 - Signal segmentation with Bellman ksegmentation algorithm
 - Turn speed detection with Madgewick filter

Closing remarks

- PDKit is an effective tool to precisely specify analytical processing framework of a study
- Open and inclusive development model
- Challenge: Published code not always properly licensed
- Challenge: Increase user and contributor network

PDkit people

Joan Saez

Ashwani Jha

Cosmin Stamate

John Rothwell

David Weston

Nikos Fragopanagos

Deep Learning Architecture

Quick Test

- UPDRS exhaustive search of all possible symptoms
- Each patient presents only a few
- Symptoms typically change slowly e.g. 6 months
- ~6 features are predictive of overall score
- Use ML to identify the specific tests that offer the highest inferential power
 - Observer five full tests
 - Apply standard ensemble of randomized decision tree method to rank tests according to predictive strength
 - Select top 3 tests for individualised quick test

Signal quality assesement

